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     This paper reports the results of research and 
analysis undertaken by Census Bureau staff.  It has 
undergone a Census Bureau review more limited in 
scope than reviews given to official Census Bureau 
publications.  It is released to inform interested parties 
of ongoing research and to encourage discussion of 
work in progress. 
 
1.  INTRODUCTION 
 
     For modeling monthly totals of passengers in 
international air travel and other seasonal time series, 
Box and Jenkins (1976) developed a two-coefficient 
time series model of factored form that is now known 
as the airline model. For a seasonal time series tZ  with 

2s ≥  observations per year, this model is given by 
 

(1)(1 )(1 ) (1 )(1 )s s
t tB B Z B Bθ ε− − = − − Θ   , 

 
where B  denotes the backshift operator, i.e. 

1t tBZ Z −= .  Throughout the paper, for any i, ( )i
tε  

denotes a sequence of independent variates with mean 
zero and variance 2

iσ .  The parameters satisfy 
1 , 1θ− ≤ Θ ≤ , and for economic time series, usually 

0Θ ≥ . The airline model is by far the most widely used 
model for monthly and quarterly macroeconomic time 
series.  This broad usage raises concerns that this model 
is overused and suggests that related but more general 
models should be investigated as alternatives. We 
present a limited study of two generalizations, focusing 
on their usefulness for seasonal adjustment, particularly 
for the ARIMA-model-based (AMB) signal extraction 
method of Hillmer and Tiao (1982). 
   When 0Θ ≥ , the airline model can be written 
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From this representation, one sees that 1/ sΘ  occurs in 
both the nonseasonal and seasonal polynomials, 
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Θ∑ , respectively, of (1). This may partially 

explain why values of the seasonal moving average 
parameter Θ  can substantially influence the trend 

component of solutions of (1) (see Section 4 of Findley 
and Martin 2002). 
     Our first generalization is obtained by substituting a 
general second-degree moving average (MA(2)) 
polynomial for 1/(1 )(1 )sB Bθ− − Θ  in (1), yielding what 
we here call the generalized airline model, 
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in which the airline model’s nonseasonal polynomial 
factor is generalized. When the roots of the MA(2) 
polynomial on the right in (2) are real, (2) is equivalent 
to what we call restricted generalized airline model, 
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Another generalization of the airline model is obtained 
by noting that the factor (1 )(1 )sB Bθ− − Θ  in (1) can be 
written as 

11 s sB B Bθ θ +− − Θ + ⋅Θ . 
Using instead a moving average polynomial with no 
constraint on the coefficient of 1sB + , we obtain 
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We call model (4) the 1-12-13 model, because in the 
case of monthly data, i.e. when 12s = , the powers of 
B  that occur on the right are 1, 12 and 13.       
     Our primary interest in this research is the use of the 
new models for seasonal adjustment.  In the next 
section, we present series for which there is support for 
use of one or more of these new models in place of the 
airline model. In Section 3, for three of the series 
identified in Section 2, we compare frequency domain 
properties of competing models’ canonical seasonal 
adjustment filters, specifically their central (symmetric) 
and one-sided (concurrent) adjustment filters. We also 
compare their seasonal adjustments.  
  
2. SERIES FOR WHICH A NEW MODEL IS 
COMPETITIVE WITH THE AIRLINE MODEL 
 
     We consider two categories of time series.  The first 
is series for which the estimated airline model fails to 
provide an AMB decomposition of the data into a sum 
of a seasonal and a nonseasonal  series, whereas a new 
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model does.  The second category is series for which at 
least one of the fitted new models is preferred over the 
airline model by Akaike’s minimum AIC criterion and, 
in many cases, provides an alternative seasonal 
adjustment with desirable features.   
       
2.1 Using a new model to obtain seasonal 
decompositions 
 
     In the AMB approach, the fitted model’s 
(generalized) autocovariance generating function 
(a.g.f.) must be decomposable into a sum of a.g.f.’s of 
ARIMA models appropriate for modeling seasonal, 
trend, and irregular components, for example, a 
nonnegative constant a.g.f. for modeling the irregular as 
white noise. Most ARIMA model types have parameter 
values for which no such decomposition exists. With 
such values, the model is “inadmissible.”   We fit the 
new models (2) and (4) to two series whose fitted 
airline models obtained in Fiorentini and Planas (2001) 
are inadmissible. The series are the quarterly Index of 
French Production of Wines (FRWPI) (1986 quarter 1 – 
2000 quarter 1), and the log of the monthly Index of 
Domestic Turnover in the Italian Manufactures of 
Textiles (ITTMTI) (November 1991 – December 
1999).  For both, the fitted generalized airline model 
(2) was admissible, but not the fitted models (1) and 
(4). Thus, an AMB seasonal adjustment is obtainable 
from (2), but not from (1) and (4). Table 1 shows model 
coefficients. AIC values (not shown) favor the airline 
model over the generalized model for both series. Other 
examples of statistically preferred but inadmissible 
models are given below. (AMB seasonal adjustments 
from “suboptimal” models can be satisfactory in the 
sense of having no residual seasonality and changing 
little with additional or moderately revised data.) 
 
2.2 Series for which a new model is preferred over the 
airline model by AIC 
 
     We fit the airline (1), generalized airline (2) and 1-
12-13 (4) models to 111 Census Bureau monthly time 
series. Of these, 39 are foreign trade (import/export) 
series, 36 are construction series, and 36 are M3 series 
(manufacturers’ shipments, inventories and orders).  
Table 2 gives a breakdown of the 23% of these series 
for which either model (2) or (4) is preferred over the 
airline model by AIC.  Recall that if the MA(2) roots 
are real, models (2) and (3) coincide. Of the 16 series 
for which AIC preferred the generalized airline model 
(2), the MA(2) roots are complex in 4 cases.  All of 
these 16 models are admissible. 
     In Table 3, we list parameter estimates for the series 
included in Table 2 for which model (3) and, in one 
case also (4), is preferred by AIC.  The table shows 
how 3a  differs from θ  and how 3b  and 3c  differ from 

1/12Θ .  Model (3) was proposed a decade ago by 

William Bell who thought the 2(1 )B−  on the left in (1) 
would often cause overdifferencing and therefore yield 

3 1b =  in (3), which Table 3 affirms. (When 1B =  is a 
zero of the moving average polynomial in  (3) or (4), 
the model can be reduced by canceling a factor of 1 B−  
from both sides of the model equation and adding a 
constant on the right.  However, for the series for which 
this occurred, we found no advantage from using a 
reduced model.) Table 4 lists parameter estimates for 
the series for which the generalized airline model is 
preferred by AIC and has complex roots. It shows how 

2 2,  a b  and 2c  compare to 1/ sθ + Θ , 1/ sθ ⋅Θ and 1/ sΘ , 
respectively. For the series with c2  (or c3 or Θ) equal to 
1, the implied seasonal component is deterministic and 
not obtainable from the AMB method. Table 5 lists 
parameter estimates for the series for which AIC 
preferred the 1-12-13 model and for which this model is 
admissible, showing how 4a  differs from θ , 4b  differs 
from Θ  and 4c  differs from the product   θ ⋅ Θ .  In 
these tables, many of the coefficients being compared 
seem to differ little (e.g. 1/ sΘ  and c2 or c3), but the AIC 
differences in favor of a generalized model with three 
coefficients indicate that the models’ coefficient vectors 
( , )θ Θ and ( , , )a b c differ significantly. 
    Among the six series for which the 1-12-13 model 
was preferred but not admissible, five were long 
enough that the out-of-sample forecast diagnostic 
described in Findley et al. (1998) could be used to 
decide if the 1-12-13 model offered better forecasts 
than the airline model and therefore potentially better 
X-12-ARIMA seasonal adjustments. For three of these 
five, the diagnostic firmly supported the choice of the 
1-12-13 model. For the other two, the new models’ 
forecasts were persistently better in the last year but 
persistently worse in several preceding years.  
 
3. FREQUENCY DOMAIN PROPERTIES OF 
FITTED MODEL’S SEASONAL ADJUSTMENT 
FILTERS 
  
     Before comparing frequency domain properties of 
the seasonal adjustment filters associated with the 
models of a few of the series identified in the last 
section, we give some background material.  For a 
linear filter for tZ  with output t j t jj

Y C Z −= ∑ , the 

frequency response function of the filter is                                                                           
2
12( )

i j

j
j

C C e
π

λ
λ

−
= ∑ ,     6 6λ− < ≤ , 

when λ  is in units of cycles per year.  The amplitude 
( ) ( )G Cλ λ=  is called the gain function of the filter. 
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Table 1.  Airline model and generalized airline model fits to the Fiorentini and Planas (2001) series (The roots 
of the MA(2) polynomials of the generalized model are complex for ITTMTI and real for FRWPI).  
 Airline model  Generalized airline model 

Series θ Θ a2 b2 c2 

ITTMTI 0.43 -0.31  1.268 0.456 0.727 
FRWPI 0.55 -0.22 0.749 0.017 0.222 

 
Table 2.  Number of series for which either model (2) or model (4) is preferred over the airline model 

Type of Series No. of series with model (2) 
preferred (by AIC)  

No. of series with model (4) preferred and  
admissible (inadmissible)  

Foreign Trade 6 of 39 3 (5) of 39 
Construction 1 of 36 0 (1) of 36 

Manufacturing 9♦ of 36 1♦ (0) of 36 
♦The series U33LVS occurs in both categories  

 

Table 3. Airline and restricted generalized airline model coefficients for series for which the generalized 
airline model is preferred by AIC and coincides with the restricted generalized model.  

 Airline model Restricted generalized airline model 
Series θ Θ/Θ1/12 a3 b3 c3 

M3000C 0.346 0.476/ 0.940 0.305 1.000 0.934 
M3010C 0.481 0.704/ 0.971 0.468 1.000 0.967 
M40020 0.210 0.457/ 0.937 0.172 1.000 0.934 
M40040 0.304 0.596/ 0.958 0.296 1.000 0.952 
X3022C 0.341 0.580/ 0.956 0.305 1.000 0.947 
X40000 0.251 0.640/ 0.963 0.372 0.902 0.974 
SL0844 0.545 1.000/ 1.000 0.732 0.834 1.000 
U34KTI -0.122 0.668/ 0.967 0.202 0.645 0.965 
U39BVS 0.444 0.272/ 0.897 0.372 0.987 0.885 
U33KVS 0.475 0.596/ 0.958 0.602 0.874 0.965 
U32SWI 0.057 0.809/ 0.983 0.311 0.734 0.976 
U33LVS 0.510 0.679/ 0.968 0.594 0.929 0.977 

 

Table 4. Airline and generalized airline model coefficients for series for which the generalized airline model is 
preferred by AIC and has complex MA(2) roots 

Series θ Θ θ+ Θ1/12 θ⋅Θ1/12 Θ1/12 a2 b2 c2 

U36FVS 0.691 0.925 1.685 0.687 0.994 1.725 0.749 1 
U34EVS 0.715 0.780 1.695 0.701 0.979 1.769 0.810 1 
U36CVS 0.289 0.314 1.196 0.261 0.908 1.349 0.499 0.925 
U34DVS 0.440 0.496 1.384 0.415 0.943 1.438 0.578 0.944 

 

Table 5. Airline and 1-12-13 model coefficients for series for which the preferred 1-12-13 model is admissible 

                     Airline model                       1-12-13 model 
      Series         θ          Θ              θ⋅Θ               a4         b4         c4 

X41020 0.418 0.635 0.266 0.357 0.659 0.425 
M21610 0.559 0.732 0.409 0.484 0.735 0.496 
M12060 0.800 0.380 0.304 0.846 0.405 0.251 
U33LVS 0.510 0.679 0.346 0.519 0.740 0.501 
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A function ( )φ λ  that satisfies ( ) ( ) ( )2
12iC G e
π φ λλ λ=  

when ( ) 0C λ ≠ , such as 

( ) ( )( ) ( )( )(12 / 2 ) rctan[Im / Re ]A C Cφ λ π λ λ= , 

is called the phase function of the filter. When 
( ) 0C λ = , ( )φ λ  is undefined. For the filters we 

consider (0) 1C =  so (0) 0φ = , and for 0λ ≠ , the 
phase delay  

 ( ) ( ) /τ λ φ λ λ= − , 
measures the time delay (or time advance if ( ) 0τ λ < ) 
induced by the filter on the λ-frequency component 
of the input time series. For example, for the k-th 
power of the backshift operator, k

t t kB Z Z −= , for 
0, 1, 2...k = ± ± , the frequency response function is 

2
12i ke
π λ−  so ( ) kτ λ = .                   

     The squared gain function 2( )G λ  has the 
important property that if tZ  is a stationary time 
series with spectral density ( )Zf λ , then the spectral 
density ( )Yf λ  of the filter output series tY  is  

                       2( ) ( ) ( )Y Zf G fλ λ λ= .                       (5)                                                      
Thus the squared gain function measures the extent to 
which the filter increases, decreases, or leaves 
unchanged the contribution to variance of each 
frequency component of the input series. An 
approach to an analogue of (5) for nonstationary 
ARIMA processes is discussed in Section 3 of 
Findley and Martin (2002). 
     The gain and phase delay functions are even, 

( ) ( )G Gλ λ− = , ( ) ( )τ λ τ λ− =  ( ( )φ λ  is odd), so 
only frequencies 0 6λ≤ ≤  need be considered. In 
fact, for the phase delay function, because we are 
mainly interested in the delays associated with 
turning points and business cycle movements, we 
shall only plot phase delay for periods greater than a 
year, i.e. for frequencies 0 1λ≤ < .  
     There are various perspectives from which the 
squared gain and phase delay plots can be evaluated 
(see Section 3 of Findley and Martin 2002 for a more 
detailed discussion than is given here).  If one of the 
new models is considered the correct model for the 
data, then from the AMB perspective, the associated 
seasonal adjustment filter must be considered mean 
square optimal, regardless of its frequency domain 
properties.  On the other hand, a user of a seasonal 
adjustment filter may be interested in whether the 
filter enhances or diminishes variation in the series at 
various frequencies, or in the amount of delay in 
detecting changes in trend (e.g. turning points) 
induced by the filter.  From the Digital Signal 
Processing perspective, a seasonal adjustment filter 
should have a gain function that is near zero at the 

seasonal frequencies and one at nonseasonal 
frequencies, perhaps with some compromise to 
obtain, e.g. less phase delay. In practice, a synthesis 
of both perspectives is appropriate for the AMB 
approach due to the approximate nature of ARIMA 
models for economic data and to desired features 
(e.g. smoothing or rapid detection of turning points) 
with no direct connection to mean square optimality. 
     Figures 1-3 present the squared gain and phase 
delay plots of the concurrent seasonal adjustment 
filter and the squared gain of the symmetric seasonal 
adjustment filter for the airline model and the new 
model(s) preferred over the airline model by AIC. 
The figures also show the seasonal adjustments.  
Figure 1 is for the series U36CVS (Unfilled orders of 
heavy duty truck manufacturing), for which the 
generalized model (2) is the preferred model; Figure 
2 corresponds to the series X41020 (Exports of 
cookware, cutlery, house and garden ware), for which 
the 1-12-13 model (4) is preferred; and Figure 3 is for 
the series U33LVS (Unfilled orders of pump and 
compressor manufacturing), the series for which both 
models (3) and (4) are preferred over the airline 
model. 
     For both the concurrent and symmetric filters, at 
the higher frequencies, the squared gains associated 
with the restricted generalized airline model (3) are 
closer to one than those of the corresponding airline 
models, representing a more neutral treatment of the 
corresponding frequency components and less 
smoothing.  This is in contrast to the squared gains 
associated with the filters from model (4), which are 
significantly farther below one at these frequencies, 
indicating a much greater suppression of higher 
frequency components and hence more smoothing.  
The phase delays associated with model (3) are less 
than those of airline model, which in turn are usually 
less than the phase delays associated with model (4), 
although the differences are not large at the most 
important low frequencies associated with not too 
rapid trend movements.   
     The graphs of seasonal adjustments from the 
airline and new models are not discernibly different 
in many months because differences in seasonal 
adjustments of less than 1% are not visible on the 
graphs.  For months when there is a visible 
difference, the seasonal adjustments confirm the 
general interpretations of the squared gain plots made 
above with regard to smoothing. For example, the 
models for which the squared gains indicate a greater 
suppression of higher frequency components away 
from seasonal frequencies are the models with 
smoother seasonal adjustments; see especially 
Figures 2-3.  Comparison of the squared gain and 
phase delay plots of the concurrent filters shows that 
greater suppression of low frequency components (or 
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less enhancement when the gain exceeds one) leads 
to greater phase delay of these components. For all of 
the series for which the 1-12-13 model was preferred, 
its seasonal adjustment filters provided greater 
smoothing but with greater phase delay at all but the 
lowest trend frequencies.  Usually (but not always) 
the preferred models (2) and (3) offered less phase 
delay and less smoothing than the airline model. 
     In future work, we shall investigate more general 
models than (2) which also generalize the seasonal 
polynomial factor of the model (2). We further plan 
to examine empirically the costs of greater smoothing 
in terms of greater revisions with new data and delays 
in detecting trend movements. 
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                           Figure 2 
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                                  Figure 3 
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